GPS Measurements in S.E. Asia: Sundaland Motion and Deformation before and after the December 26th, 2004 Magnitude 9.0 Earthquake

W.J.F. Simons (1), C. Vigny (2), S. Abu (3), Chalermchon Satirapod (4), M. Hashizume (4), Sarayut Yousamran (5), C. Subarya (6), K. Omar (7), H.Z. Abidin (8), A. Socquet (1) and B.A.C. Ambrosius (1)

(1) DEOS, Delft, Netherlands
(2) ENS, Paris, France
(3) DSMM, Kuala Lumpur, Malaysia
(4) Chulalongkorn University, Bangkok, Thailand
(5) RTSD, Bangkok, Thailand
(6) BAKOSURTANAL, Cibinong, Indonesia
(7) UTM, Johor, Malaysia
(8) ITB, Bandung, Indonesia

No contents of this presentation can be used without prior approval of the first author (Wim.Simons@lr.tudelft.nl)

Regional Seminar on Geodynamics, 16 February 2004, Kuala Lumpur, Malaysia
Outline

• What is Crustal Motion?
• Tectonic Settings of S.E. Asia
• GPS for Geodynamic Studies
• Aim GPS Measurements in S.E. Asia?
• Geodetic GPS Network in S.E. Asia
• GPS Position Time Series
• Sundaland Motion and Deformation
• Sundaland Deformation: 26 December 2004
• Co-seismic Displacements from GPS
• Post-seismic Displacements from GPS
• Additional GPS Measurements in S.E. Asia
• Conclusive Remarks
What is Crustal Motion?

- Earth’s crust is made up of more than 20 tectonic plates
- Plates ‘float’ on the ‘fluid’ interior of the Earth
- Plates are moving (differently) for millions of years
- Plates are continuously (re)shaping the Earth’s exterior
- Geodynamic processes occur when plates converge/collide:
 - Earthquakes
 - Volcanic eruptions
 - Tectonically induced landslides
 - Tsunamis
Tectonic Settings of S.E. Asia

Convergence of Indian, Australian, Philippine and Sundaland plates

Wednesday, February 16, 2005
GPS for Geodynamic Studies

GPS (24+) Constellation | GPS Signals Transmitted | Geodetic GPS Receivers

- Measure stable GPS points continuously or in campaign style
- Use scientific high-precision GPS software (GIPSY, GAMIT,...)
- Compute (daily) positions with millimetre accuracy
- Changes position in time give displacements or velocities
Aim GPS Measurements in S.E. Asia?

1) Define the (absolute) motion of the Sundaland block
 - Covers most of S.E. Asia, moving at 2.5-3.5 cm/yr
 - Remeasure/expand EU-ASEAN GEODYSSEA network
 - Include (high-quality) ASEAN GPS networks

2) Define the deformation zones and Sundaland boundaries
 - Regions that move different than ‘rigid’ Sundaland
 - Remove the absolute motion from the GPS velocities

3) Study specific natural hazard areas in S.E. Asia
 - Monitor (near real-time) behaviour of tectonic faults
 - Earthquake related pre-/co-/post-seismic motions
Geodetic GPS Network in S.E. Asia

GPS network size in S.E. Asia: 100+ points (2003)
GPS Position Time Series

GPS point KUAL, Malaysia

Constructing time series from GPS campaigns

Linear fit through a number of observations

Overview GPS activities

- GPS measurements EU-ASEAN partners
- Update GPS database S.E. Asia
- Merge all EU-ASEAN GPS data
- Include data global (IGS) GPS network
- High-precision (daily) network positions
- Map in global (ITRF) reference frame
- Estimate yearly position changes
- Update kinematical model S.E. Asia
Sundaland Motion and Deformation (1)

Global Reference Frame (ITRF-2000)

• Sundaland has rigid core, but significant deformation close to its boundaries
Sundaland Motion and Deformation (2)

Describe motion with a rotation pole vector

<table>
<thead>
<tr>
<th>Reference</th>
<th>Reference frame</th>
<th>Sites used</th>
<th>Pole Rotation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Latitude (°), Longitude (°), Rate (°/Myr)</td>
</tr>
<tr>
<td>GEODYSSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson et al. [1998]</td>
<td>ITRF-94</td>
<td>12</td>
<td>31.8°, 134.0°, -0.280°</td>
</tr>
<tr>
<td>Simons et al. [1999]</td>
<td>ITRF-96</td>
<td>12</td>
<td>43.0°, 119.0°, -0.370°</td>
</tr>
<tr>
<td>Michel et al. [2001]</td>
<td>ITRF-97</td>
<td>10</td>
<td>56.0°, 77.6°, -0.339°</td>
</tr>
<tr>
<td>SEAMERGES</td>
<td>ITRF-00</td>
<td>28</td>
<td>48.9°, 85.8°, -0.341°</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sella et al. [2002]</td>
<td>ITRF-97</td>
<td>3</td>
<td>38.9°, 93.1°, -0.393°</td>
</tr>
<tr>
<td>Kreemer et al. [2003]</td>
<td>NNR</td>
<td>9</td>
<td>47.3°, 89.8°, -0.392°</td>
</tr>
<tr>
<td>Bock et al. [2003]</td>
<td>ITRF-00</td>
<td>16</td>
<td>49.8°, 84.1°, -0.320°</td>
</tr>
</tbody>
</table>

History Sundaland rotation pole parameters

GPS velocities S.E. Asia w.r.t. Sundaland

Wednesday, February 16, 2005
Sundaland Deformation: 26 December 2004

Daily Occurrence of Earthquakes in S.E. Asia

01/12/04-01/02/05

USGS Database, Animation DEOS
Before Mw 9.0 Earthquake:
- Sundaland stable with rigid core, deformation at edges
- GPS sites positions & velocities well known (2-3 cm/yr)

During Mw 9.0 Earthquake:
- Sundaland deforms further than 2000 km inside core
- Co-seismic displacements (up to 20 cm/min)
- GPS network is deformed, new positions unknown

After Mw 9.0 Earthquake:
- Sundaland continues to deform significantly
- Post-seismic displacements (initially up to 1 cm/day)
- GPS network continues to deform for months->years
Co-seismic displacements from GPS

- Permanent GPS data:
 - Thailand (4)
 - Malaysia (36)
 - Indonesia (5)
 - Singapore (1)
 - Other countries (9)
 - Outside region (21)

- Unique solution:
 - 14 days pre-/post-quake
 - Combined solution
 - Global reference frame
 - Accuracy ± 2 mm
 - Input earthquake model
Co-seismic displacements from GPS

- Permanent GPS data:
 - Thailand (4)
 - Malaysia (36)
 - Indonesia (5)
 - Singapore (1)
 - Other countries (9)
 - Outside region (21)

- Unique solution:
 - 14 days pre-/post-quake
 - Combined solution
 - Global reference frame
 - Accuracy ± 2 mm
 - Input earthquake model
Co-seismic displacements from GPS

- Kinematic solution:
 - Position changes during day
 - Position update each 30 s
 - Accuracy ± 2 cm (horizontal)
 - Feasible for any GPS location

- Unique results:
 - At more than 40 locations
 - Changes up to 25 cm in 3 min
 - Start/end co-seismic motions
 - Low frequency quake signals
 - At distances over 2000 km
 - Input to earthquake model
Post-seismic displacements from GPS

- Daily solutions after earthquake:
 - Position changes per day
 - Compare with average before
 - Accuracy ± 5 mm (horizontal)
 - Follows co-seismic motion

- Unique results:
 - At more than 11 locations
 - Up to 4.5 cm in 2 weeks
 - At distances over 1500 km
 - Input to earthquake model
Additional GPS Measurements in S.E. Asia

- GPS Campaigns urgently needed:
 - Indonesia and Thailand
 - Further densify displacement field
 - Post-seismic ‘pollutes’ co-seismic
 - Only at points measured before quake

GPS Campaign Thailand (10-15 February 2005)

Nearby Tsunami damage

Promthep Cape, Phuket, Thailand

Phuket (PHUK) GPS point

Co-seismic
Post-seismic
(Steady-state) on 15/02/2005

26 + 9? cm
Conclusive Remarks

• Sundaland motion and deformation was well defined before 26/12/04.
• The Mw 9.0 earthquake has generated significant deformation of Sundaland, on a scale never before seen with GPS (> 2000 km).
• A unique combined GPS solution for the region has been computed, which shows intriguing co- and post-seismic deformation patterns.
• The entire geodetic networks of Malaysia and Thailand are internally deformed up to 35 cm (on continue to deform).
• The presented GPS results will allow a better modelling of the earthquake mechanism, and it’s future impact on the region.
• The SEAMERGES EU-ASEAN partners have responded quickly: A special (internal) scientific report on the earthquake/tsunami has prompted (external) partners to collect/provide and analyze valuable GPS data.